Identification of polyamine transporters in plants: paraquat transport provides crucial clues.

نویسندگان

  • Miki Fujita
  • Kazuo Shinozaki
چکیده

Polyamine (PA) transport as well as PA biosynthesis, degradation and conjugation plays a vital role in the regulation of intracellular PA levels, which are essential for cell growth. Generally, PA uptake activity is elevated in rapidly proliferating cells. Previous studies showed that PA uptake in plant cells occurred via energy-dependent, protein-mediated transport systems. Numerous lines of evidence suggest that paraquat (PQ), one of the most widely used herbicides, is transported by the PA transport system in diverse organisms including plants. The PA/PQ transport interactions are proposed to be due to specific structural similarities between PA and PQ. The understanding of PA transport mechanisms has progressed in parallel with that of PQ transport, but the molecular identity of the plant PA/PQ transporter has remained an enigma. Recently, independent studies identified the L-type amino acid transporter (LAT) family transmembrane proteins as transporters of both PA and PQ. Arabidopsis LAT family proteins showed different subcellular localization properties, which suggested that these transporters were involved in intracellular PA trafficking and PA uptake across the plasma membrane. The identification of plant PA transporters is an important step in understanding the mechanism of PA homeostasis in plant cells. In this review, we highlight recent advances in the study of PA transport systems that are linked to the understanding of PQ translocation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of paraquat resistance – from the antioxidant enzymes to the transporters

In this paper a review of the most important results on the paraquat resistance mechanism of weeds is given, with special respect on horseweed Conyza canadensis (L.) Cronq. There is no difference between susceptible and resistant plants in the activity of antioxidant enzymes and in the penetration of paraquat into the chloroplasts. The paraquat resistance is primarily based on higher expression...

متن کامل

Transport of polyamines in Drosophila S2 cells: kinetics, pharmacology and dependence on the plasma membrane proton gradient.

Polyamine transport activities have been described in diverse multicellular systems, but their bioenergetic mechanisms and molecular identity remain unclear. In the present paper, we describe a high-affinity spermine/spermidine transport activity expressed in Drosophila S2 cells. Ion-replacement experiments indicate that polyamine uptake across the cell membrane is Na+-, K+-, Cl-- and Ca2+-inde...

متن کامل

Paraquat Resistant1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat.

Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. Th...

متن کامل

Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins.

Escherichia coli KK313, which was deficient in spermidine transport, was isolated by treatment of E. coli MA261 with N-methyl-N'-nitro-N-nitrosoguanidine. E. coli NH1596, which was deficient in spermidine transport and has a 90% decreased putrescine transport activity, was obtained by a second treatment of E. coli KK313 with the same mutagen. Genes for polyamine transport systems were isolated ...

متن کامل

Differential effects of paraquat on oxidative stress parameters and polyamine levels in two freshwater invertebrates.

Paraquat is still a widely used herbicide in several countries. Its toxic action on plants occurs through a one-electron reduction interfering with the photosynthesis process. By a similar reaction, the herbicide may induce peroxidation processes in non-target animal species. Furthermore, paraquat may interfere with the cellular transport of polyamines. The aim of this work was to investigate s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 55 5  شماره 

صفحات  -

تاریخ انتشار 2014